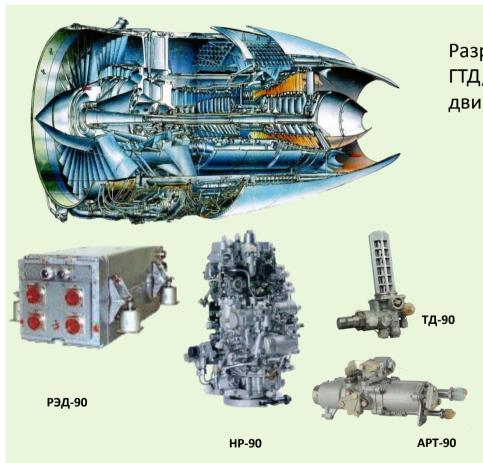
ОПЫТ ИСПОЛЬЗОВАНИЯ MODEL-BASED CALIBRATION TOOLBOX ПРИ КАЛИБРОВКЕ СИЛОВОГО АГРЕГАТА

Вольский М.В.


Сулимова Д.А.

Штейников А.В.

Основные направления деятельности АО «ОДК-СТАР»

Разработка и производство комплексных САУ ГТД, включающих в себе насосы топливопитания двигателя, цифровые электронные регуляторы.

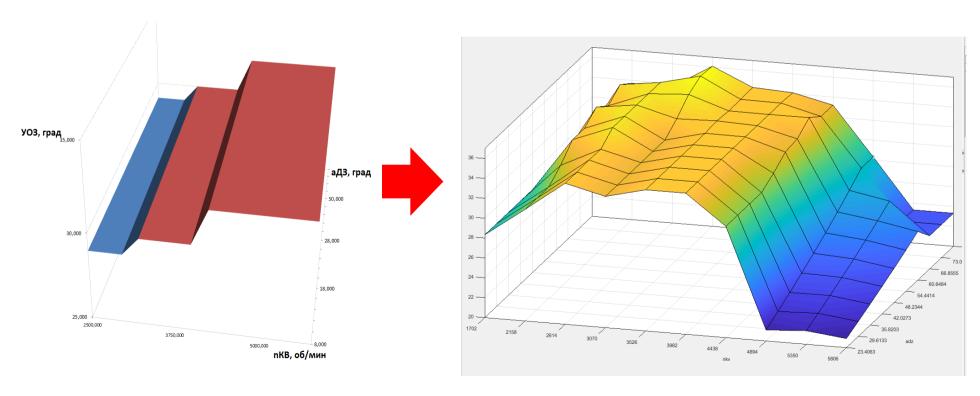
АО «ОДК-СТАР» — первый в стране разработчик цифровых САУ. Работы в этом направлении начались в 80-х годах XX века.

Первой разработкой, внедрённой в серийное производство была система для двигателя ПС-90А самолётов Ил-96-300, Ту-204, Ту-214.

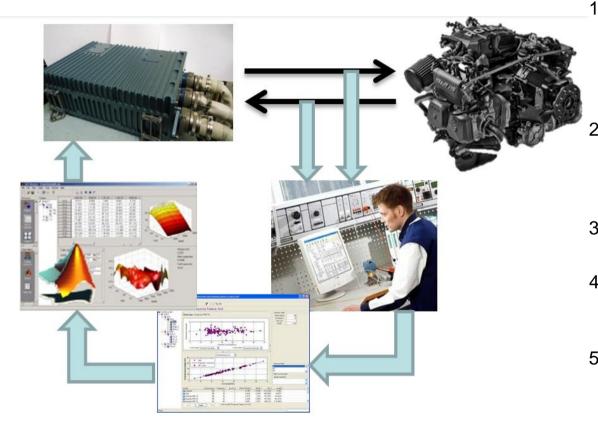
В настоящее время выполнена разработка САУ для новейшего ближнесреднемагистрального самолета МС-21.

Краткое описание работы, в рамках которой выполнен проект

Разработка и производство электронного регулятора для автоматического управления двигателем внутреннего сгорания, воздушным винтом и оборудованием топливной аппаратуры беспилотного летательного аппарата.



Цели проекта


Получить оптимальные зависимости коэффициента избытка воздуха ($\alpha(\alpha_{д3}, n_{KB})$), угла опережения зажигания (УОЗ($\alpha_{д3}, n_{KB}$)) для обеспечения минимального расхода топлива ДВС при максимальном крутящем моменте на основных рабочих режимах при помощи МВСТ.

Ограничивающие факторы в процессе оптимизации должны быть в пределах нормы.

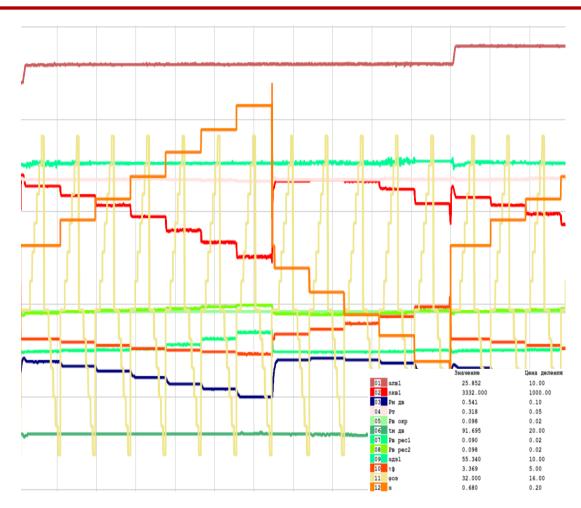
Основные этапы проекта

- . Доработка системы управления двигателем, позволяющая собрать поле точек в автоматическом режиме.
- 2. Сбор, обработка зарегистрированных данных с реального двигателя.
- 3. Построение модели двигателя.
- 4. Проведение оптимизации, получение калибровочных таблиц.
- 5. Проверка калибровочных таблиц на реальном двигателе.
- 6. Корректировка по необходимости калибровочных таблиц.

Сложности проекта

- Необходимость создания стенда, позволяющего одновременно регистрировать все данные, необходимые для оптимизации (крутящий момент и расход топлива).
- Для проведения оптимизации требуется снять не менее 2000-3000 точек.
- Необходимость доработки системы регулирования двигателем, позволяющей получить поле точек.

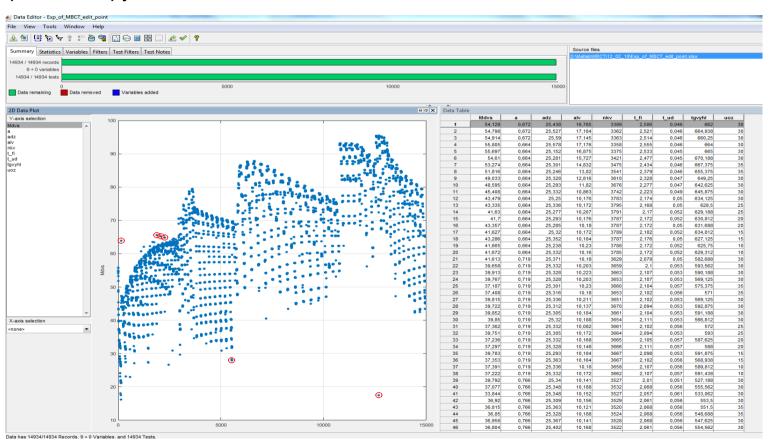
Доработка СУ двигателя для снятия поля точек


Автоматический перебор параметров с постоянным, выбираемым шагом:

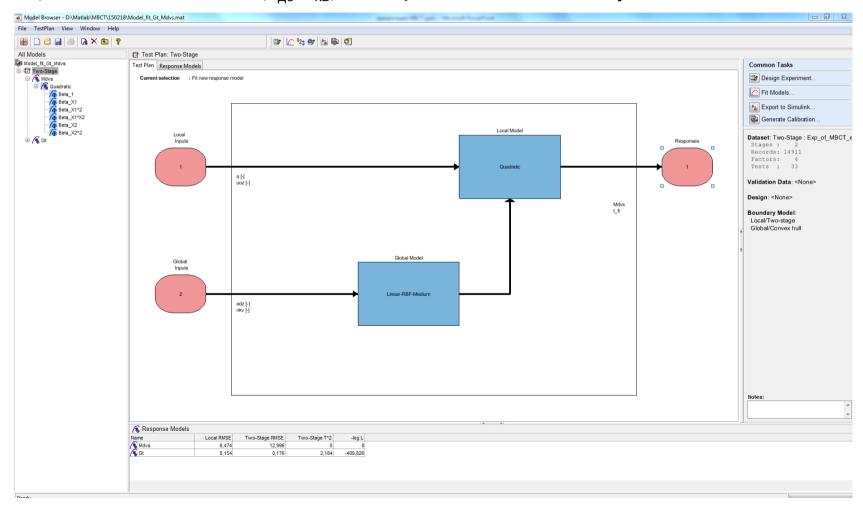
- Угол опережения зажигания
- Коэффициент избытка воздуха
- Положение лопастей винта

Защиты по:

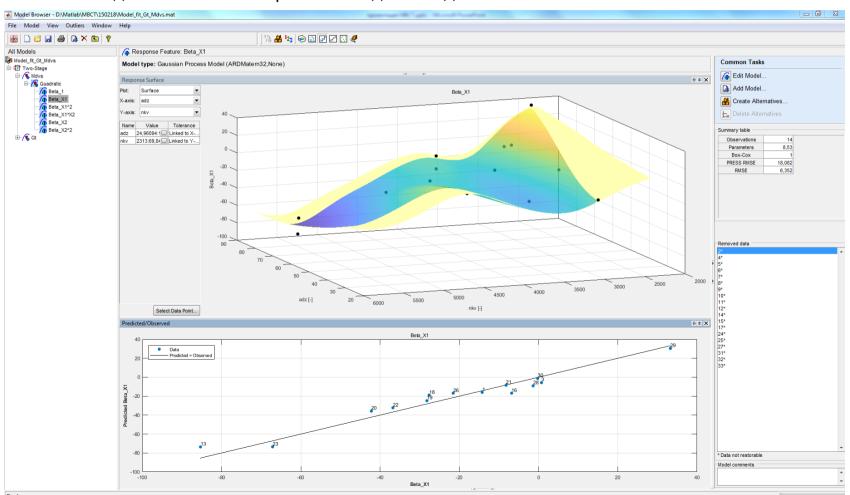
- температурам выхлопных газов,
- температуре охлаждающей жидкости
- температуре масла двигателя
- давлению масла двигателя
- температуры ресивера
- высоким оборотам


Изменение режима работы проводилось вручную.

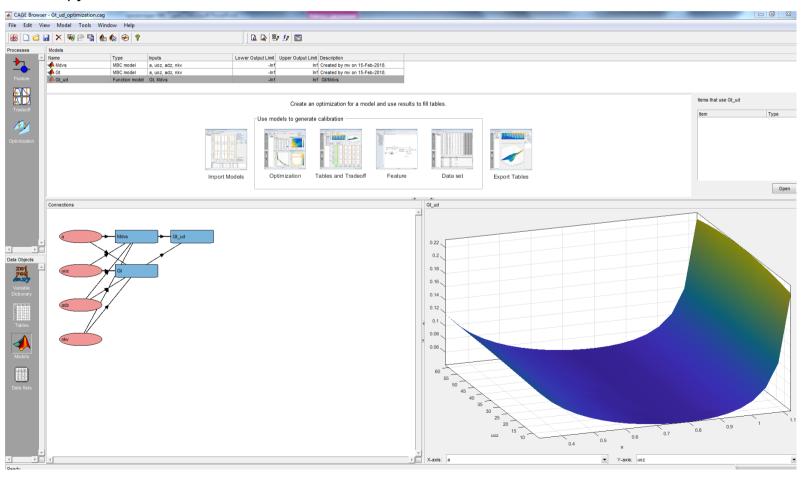
Сбор, обработка зарегистрированных данных


Полученные данные загружаются в Data Editor, где происходит их анализ, обработка, сортировка на группы.

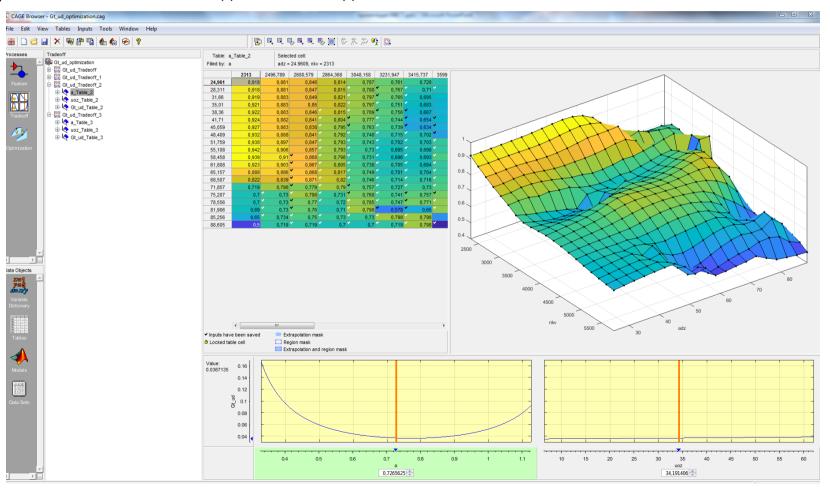
Построение модели двигателя


На данном этапе выбирается тип модели, какие параметры при эксперименте были локальными (α , УОЗ), а какие – глобальными (α _{дз}, n_{кв}). Также указывается что мы получаем на выходе из модели.

Построение модели двигателя


На этом этапе строится модель по обработанным и отсортированным данным. Также имеется возможность видоизменять и настраивать модель на данном этапе.

Проведение оптимизации


Импортируем полученные модели в CAGE Browser. Определяем целевую функцию по которой будем оптимизировать. В нашем случае: Gt_ud = Gt / Mdvs. Запускаем оптимизацию по минимуму для целевой функции.

Проведение оптимизации

После проведения оптимизации анализируются и обрабатываются калибровочные таблицы. Полученными значениями подменяем исходные.

Проверка калибровочных таблиц на реальном двигателе

Снимаем данные двигателя при работе с полученными калибровочными таблицами.

Калибровочные таблицы a = f(aД3, nKB), УОЗ = f(aД3, nKB) в виде *.xlsx-файла.

Mdvs		а	adz	alv	nkv	t_fi	tgvyhl	uoz
	54,129	0,671875	25,4375	16,78516	3389	2,505859	662	30
	54,798	0,671875	25,52734	17,18359	3362	2,521484	664,9375	30
	54,914	0,671875	25,58984	17,14453	3363	2,513672	660,25	30
	55,805	0,664063	25,57812	17,17578	3358	2,554688	664	30
	55,697	0,664063	25,15234	16,875	3375	2,533203	665	30
	54,61	0,664063	25,28125	15,72656	3421	2,476562	670,1875	30
	53,274	0,664063	25,30078	14,83203	3475	2,433594	667,375	35
	51,816	0,664063	25,24609	13,82031	3541	2,378906	655,375	35
	49,033	0,664063	25,32812	12,81641	3610	2,328125	649,25	30
	48,595	0,664063	25,29297	11,82031	3676	2,277344	642,625	30
	45,408	0,664063	25,33203	10,86328	3742	2,222656	645,875	30
	43,479	0,664063	25,25	10,17578	3783	2,173828	634,125	30
	43,335	0,664063	25,33594	10,17188	3795	2,167969	628,5	25
	41,63	0,664063	25,27734	10,20703	3791	2,169922	629,1875	25
	41,7	0,664063	25,29297	10,17578	3787	2,171875	630,8125	20
	43,357	0,664063	25,28516	10,17969	3787	2,171875	631,6875	20
	41,627	0,664063	25,32031	10,17188	3789	2,181641	634,8125	15
	43,286	0,664063	25,35156	10,18359	3787	2,175781	627,125	15
	41,665	0,664063	25,23828	10,23047	3788	2,171875	625,75	10
	41,672	0,664063	25,33203	10,16016	3785	2,171875	629,3125	10

Рекомендации коллегам

Для использования МВСТ в работе необходимо обеспечить возможность проведения большого количества тестов на силовом агрегате.

Следующие шаги

- Введение ограничений при оптимизации по детонации двигателя.
- Уточнить модель по параметрам снятым при работе двигателя на высоте, провести повторную оптимизацию по полученной модели.